Loading

Publications

  • Efficient automated scheduling of trains remains a major challenge for modern railway systems. The underlying vehicle rescheduling problem (VRSP) has been a major focus of Operations Research (OR) since decades. Traditional approaches use complex simulators to study VRSP, where experimenting with a broad range of novel ideas is time consuming and has a huge computational overhead. In this paper, we introduce a two-dimensional simplified grid environment called "Flatland" that allows for faster experimentation. Flatland does not only reduce the complexity of the full physical simulation, but also provides an easy-to-use interface to test novel approaches for the VRSP, such as Reinforcement Learning (RL) and Imitation Learning (IL). In order to probe the potential of Machine Learning (ML) research on Flatland, we (1) ran a first series of RL and IL experiments and (2) design and executed a public Benchmark at NeurIPS 2020 to engage a large community of researchers to work on this problem. Our own experimental results, on the one hand, demonstrate that ML has potential in solving the VRSP on Flatland. On the other hand, we identify key topics that need further research. Overall, the Flatland environment has proven to be a robust and valuable framework to investigate the VRSP for railway networks. Our experiments provide a good starting point for further research and for the participants of the NeurIPS 2020 Flatland Benchmark. All of these efforts together have the potential to have a substantial impact on shaping the mobility of the future.
  • Although deep reinforcement learning has led to breakthroughs in many difficult domains, these successes have required an ever-increasing number of samples, affording only a shrinking segment of the AI community access to their development. Resolution of these limitations requires new, sample-efficient methods. To facilitate research in this direction, we propose this second iteration of the MineRL Competition. The primary goal of the competition is to foster the development of algorithms which can efficiently leverage human demonstrations to drastically reduce the number of samples needed to solve complex, hierarchical, and sparse environments. To that end, participants compete under a limited environment sample-complexity budget to develop systems which solve the MineRL ObtainDiamond task in Minecraft, a sequential decision making environment requiring long-term planning, hierarchical control, and efficient exploration methods. The competition is structured into two rounds in which competitors are provided several paired versions of the dataset and environment with different game textures and shaders. At the end of each round, competitors submit containerized versions of their learning algorithms to the AIcrowd platform where they are trained from scratch on a hold-out dataset-environment pair for a total of 4-days on a pre-specified hardware platform. In this follow-up iteration to the NeurIPS 2019 MineRL Competition, we implement new features to expand the scale and reach of the competition. In response to the feedback of the previous participants, we introduce a second minor track focusing on solutions without access to environment interactions of any kind except during test-time. Further we aim to prompt domain agnostic submissions by implementing several novel competition mechanics including action-space randomization and desemantization of observations and actions.
  • Deep reinforcement learning is prone to overfitting, and traditional benchmarks such as Atari 2600 benchmark can exacerbate this problem. The Obstacle Tower Challenge addresses this by using randomized environments and separate seeds for training, validation, and test runs. This paper examines various improvements and best practices to the PPO algorithm using the Obstacle Tower Challenge to empirically study their impact with regards to generalization. Our experiments show that the combination provides state-of-the-art performance on the Obstacle Tower Challenge.
  • Unsupervised learning of disentangled representations is an open problem in machine learning. The Disentanglement-PyTorch library is developed to facilitate research, implementation, and testing of new variational algorithms. In this modular library, neural architectures, dimensionality of the latent space, and the training algorithms are fully decoupled, allowing for independent and consistent experiments across variational methods. The library handles the training scheduling, logging, and visualizations of reconstructions and latent space traversals. It also evaluates the encodings based on various disentanglement metrics. The library, so far, includes implementations of the following unsupervised algorithms VAE, Beta-VAE, Factor-VAE, DIP-I-VAE, DIP-II-VAE, Info-VAE, and Beta-TCVAE, as well as conditional approaches such as CVAE and IFCVAE. The library is compatible with the Disentanglement Challenge of NeurIPS 2019, hosted on AICrowd, and achieved the 3rd rank in both the first and second stages of the challenge.
  • The aim of ImageCLEFmed Caption task is to develop a system that automatically labels radiology images with relevant medical concepts. We describe our Deep Neural Network (DNN) based approach for tackling this problem. On the challenge test set of 3,534 radiology images, our system achieves an F1 score of 0.375 and ranks high, 12th among all systems that were successfully submitted to the challenge, whereby we only rely on the provided data sources and do not use any external medical knowledge or ontologies, or pretrained models from other medical image repositories or application domains.
  • Open-ended learning is a core research field of machine learning and robotics aiming to build learning machines and robots able to autonomously acquire knowledge and skills and to reuse them to solve novel tasks. The multiple challenges posed by open-ended learning have been operationalized in the robotic competition REAL 2020. This requires a simulated camera-arm-gripper robot to (a) autonomously learn to interact with objects during an intrinsic phase where it can learn how to move objects and then (b) during an extrinsic phase, to re-use the acquired knowledge to accomplish externally given goals requiring the robot to move objects to specific locations unknown during the intrinsic phase. Here we present a 'baseline architecture' for solving the challenge, provided as baseline model for REAL 2020. Few models have all the functionalities needed to solve the REAL 2020 benchmark and none has been tested with it yet. The architecture we propose is formed by three components: (1) Abstractor: abstracting sensory input to learn relevant control variables from images; (2) Explorer: generating experience to learn goals and actions; (3) Planner: formulating and executing action plans to accomplish the externally provided goals. The architecture represents the first model to solve the simpler REAL 2020 'Round 1' allowing the use of a simple parameterised push action. On Round 2, the architecture was used with a more general action (sequence of joints positions) achieving again higher than chance level performance. The baseline software is well documented and available for download and use at this https URL.
  • The challenge of learning disentangled representation has recently attracted much attention and boils down to a competition using a new real world disentanglement dataset (Gondal et al., 2019). Various methods based on variational auto-encoder have been proposed to solve this problem, by enforcing the independence between the representation and modifying the regularization term in the variational lower bound. However recent work by Locatello et al. (2018) has demonstrated that the proposed methods are heavily influenced by randomness and the choice of the hyper-parameter. In this work, instead of designing a new regularization term, we adopt the FactorVAE but improve the reconstruction performance and increase the capacity of network and the training step. The strategy turns out to be very effective and achieve the 1st place in the challenge.
  • By integrating dynamics models into model-free reinforcement learning (RL) methods, model-based value expansion (MVE) algorithms have shown a significant advantage in sample efficiency as well as value estimation. However, these methods suffer from higher function approximation errors than model-free methods in stochastic environments due to a lack of modeling the environmental randomness. As a result, their performance lags behind the best model-free algorithms in some challenging scenarios. In this paper, we propose a novel Hybrid-RL method that builds on MVE, namely the Risk Averse Value Expansion (RAVE). With imaginative rollouts generated by an ensemble of probabilistic dynamics models, we further introduce the aversion of risks by seeking the lower confidence bound of the estimation. Experiments on a range of challenging environments show that by modeling the uncertainty completely, RAVE substantially enhances the robustness of previous model-based methods, and yields state-of-the-art performance. With this technique, our solution gets the first place in NeurIPS 2019: Learn to Move.
  • Segmentation is one of the most important and popular tasks in medical image analysis, which plays a critical role in disease diagnosis, surgical planning, and prognosis evaluation. During the past five years, on the one hand, thousands of medical image segmentation methods have been proposed for various organs and lesions in different medical images, which become more and more challenging to fairly compare different methods. On the other hand, international segmentation challenges can provide a transparent platform to fairly evaluate and compare different methods. In this paper, we present a comprehensive review of the top methods in ten 3D medical image segmentation challenges during 2020, covering a variety of tasks and datasets. We also identify the "happy-families" practices in the cutting-edge segmentation methods, which are useful for developing powerful segmentation approaches. Finally, we discuss open research problems that should be addressed in the future. We also maintain a list of cutting-edge segmentation methods at \url{this https URL}.
  • A disentangled representation of a data set should be capable of recovering the underlying factors that generated it. One question that arises is whether using Euclidean space for latent variable models can produce a disentangled representation when the underlying generating factors have a certain geometrical structure. Take for example the images of a car seen from different angles. The angle has a periodic structure but a 1-dimensional representation would fail to capture this topology. How can we address this problem? The submissions presented for the first stage of the NeurIPS2019 Disentanglement Challenge consist of a Diffusion Variational Autoencoder (ΔVAE) with a hyperspherical latent space which can, for example, recover periodic true factors. The training of the ΔVAE is enhanced by incorporating a modified version of the Evidence Lower Bound (ELBO) for tailoring the encoding capacity of the posterior approximate.
  • The Food Recognition Benchmark: Using DeepLearning to Recognize Food on Images
    Sharada Prasanna Mohanty
    Gaurav Singhal Eric Antoine Scuccimarra
    Djilani Kebaili Harris Héritier
    +2 more

    Jun 2021

    The automatic recognition of food on images has numerous interesting applications, including nutritional tracking in medical cohorts. The problem has received significant research attention, but an ongoing public benchmark to develop open and reproducible algorithms has been missing. Here, we report on the setup of such a benchmark using publicly available food images sourced through the mobile MyFoodRepo app. Through four rounds, the benchmark released the MyFoodRepo-273 dataset constituting 24,119 images and a total of 39,325 segmented polygons categorized in 273 different classes. Models were evaluated on private tests sets from the same platform with 5,000 images and 7,865 annotations in the final round. Top-performing models on the 273 food categories reached a mean average precision of 0.568 (round 4) and a mean average recall of 0.885 (round 3). We present experimental validation of round 4 results, and discuss implications of the benchmark setup designed to increase the size and diversity of the dataset for future rounds.
  • Towards robust and domain agnostic reinforcement learning competitions
    William Hebgen Guss
    Stephanie Milani Nicholay Topin
    Brandon Houghton Sharada Mohanty
    +24 more

    Jun 2021

    Reinforcement learning competitions have formed the basis for standard research benchmarks, galvanized advances in the state-of-the-art, and shaped the direction of the field. Despite this, a majority of challenges suffer from the same fundamental problems: participant solutions to the posed challenge are usually domain-specific, biased to maximally exploit compute resources, and not guaranteed to be reproducible. In this paper, we present a new framework of competition design that promotes the development of algorithms that overcome these barriers. We propose four central mechanisms for achieving this end: submission retraining, domain randomization, desemantization through domain obfuscation, and the limitation of competition compute and environment-sample budget. To demonstrate the efficacy of this design, we proposed, organized, and ran the MineRL 2020 Competition on Sample-Efficient Reinforcement Learning. In this work, we describe the organizational outcomes of the competition and show that the resulting participant submissions are reproducible, non-specific to the competition environment, and sample/resource efficient, despite the difficult competition task.
  • The Multi-Agent Behavior Dataset: Mouse Dyadic Social Interactions
    Jennifer J Sun
    Tomomi Karigo Dipam Chakraborty
    Sharada P Mohanty David J Anderson
    +3 more

    Apr 2021

    Multi-agent behavior modeling aims to understand the interactions that occur between agents. We present a multi-agent dataset from behavioral neuroscience, the Caltech Mouse Social Interactions (CalMS21) Dataset. Our dataset consists of trajectory data of social interactions, recorded from videos of freely behaving mice in a standard resident-intruder assay. The CalMS21 dataset is part of the Multi-Agent Behavior Challenge 2021 and for our next step, our goal is to incorporate datasets from other domains studying multi-agent behavior. To help accelerate behavioral studies, the CalMS21 dataset provides a benchmark to evaluate the performance of automated behavior classification methods in three settings: (1) for training on large behavioral datasets all annotated by a single annotator, (2) for style transfer to learn inter-annotator differences in behavior definitions, and (3) for learning of new behaviors of interest given limited training data. The dataset consists of 6 million frames of unlabelled tracked poses of interacting mice, as well as over 1 million frames with tracked poses and corresponding frame-level behavior annotations. The challenge of our dataset is to be able to classify behaviors accurately using both labelled and unlabelled tracking data, as well as being able to generalize to new annotators and behaviors.
  • Flatland Competition 2020: MAPF and MARL for Efficient Train Coordination on a Grid World
    Florian Laurent
    Manuel Schneider Christian Scheller
    Jeremy Watson Jiaoyang Li
    +22 more

    Mar 2021

    The Flatland competition aimed at finding novel approaches to solve the vehicle re-scheduling problem (VRSP). The VRSP is concerned with scheduling trips in traffic networks and the re-scheduling of vehicles when disruptions occur, for example the breakdown of a vehicle. While solving the VRSP in various settings has been an active area in operations research (OR) for decades, the ever-growing complexity of modern railway networks makes dynamic real-time scheduling of traffic virtually impossible. Recently, multi-agent reinforcement learning (MARL) has successfully tackled challenging tasks where many agents need to be coordinated, such as multiplayer video games. However, the coordination of hundreds of agents in a real-life setting like a railway network remains challenging and the Flatland environment used for the competition models these real-world properties in a simplified manner. Submissions had to bring as many trains (agents) to their target stations in as little time as possible. While the best submissions were in the OR category, participants found many promising MARL approaches. Using both centralized and decentralized learning based approaches, top submissions used graph representations of the environment to construct tree-based observations. Further, different coordination mechanisms were implemented, such as communication and prioritization between agents. This paper presents the competition setup, four outstanding solutions to the competition, and a cross-comparison between them.
  • The NeurIPS 2020 Procgen Competition was designed as a centralized benchmark with clearly defined tasks for measuring Sample Efficiency and Generalization in Reinforcement Learning. Generalization remains one of the most fundamental challenges in deep reinforcement learning, and yet we do not have enough benchmarks to measure the progress of the community on Generalization in Reinforcement Learning. We present the design of a centralized benchmark for Reinforcement Learning which can help measure Sample Efficiency and Generalization in Reinforcement Learning by doing end to end evaluation of the training and rollout phases of thousands of user submitted code bases in a scalable way. We designed the benchmark on top of the already existing Procgen Benchmark by defining clear tasks and standardizing the end to end evaluation setups. The design aims to maximize the flexibility available for researchers who wish to design future iterations of such benchmarks, and yet imposes necessary practical constraints to allow for a system like this to scale. This paper presents the competition setup and the details and analysis of the top solutions identified through this setup in context of 2020 iteration of the competition at NeurIPS.
  • Though deep reinforcement learning has led to breakthroughs in many difficult domains, these successes have required an ever-increasing number of samples. As state-of-the-art reinforcement learning (RL) systems require an exponentially increasing number of samples, their development is restricted to a continually shrinking segment of the AI community. Likewise, many of these systems cannot be applied to real-world problems, where environment samples are expensive. Resolution of these limitations requires new, sample-efficient methods. To facilitate research in this direction, we introduce the MineRL Competition on Sample Efficient Reinforcement Learning using Human Priors. The primary goal of the competition is to foster the development of algorithms which can efficiently leverage human demonstrations to drastically reduce the number of samples needed to solve complex, hierarchical, and sparse environments. To that end, we introduce: (1) the Minecraft ObtainDiamond task, a sequential decision making environment requiring long-term planning, hierarchical control, and efficient exploration methods; and (2) the MineRL-v0 dataset, a large-scale collection of over 60 million state-action pairs of human demonstrations that can be resimulated into embodied trajectories with arbitrary modifications to game state and visuals. Participants will compete to develop systems which solve the ObtainDiamond task with a limited number of samples from the environment simulator, Malmo. The competition is structured into two rounds in which competitors are provided several paired versions of the dataset and environment with different game textures. At the end of each round, competitors will submit containerized versions of their learning algorithms and they will then be trained/evaluated from scratch on a hold-out dataset-environment pair for a total of 4-days on a prespecified hardware platform.
  • Global Wheat Head Dataset 2021: more diversity to improve the benchmarking of wheat head localization methods
    Etienne David
    Mario Serouart Daniel Smith
    Simon Madec Kaaviya Velumani
    +30 more

    Jun 2003

    The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4,700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience in 2020, a few avenues for improvements have been identified, especially from the perspective of data size, head diversity and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and augmented by adding 1,722 images from 5 additional countries, allowing for 81,553 additional wheat heads to be added. We now release a new version of the Global Wheat Head Detection (GWHD) dataset in 2021, which is bigger, more diverse, and less noisy than the 2020 version. The GWHD 2021 is now publicly available at this http URL and a new data challenge has been organized on AIcrowd to make use of this updated dataset.
  • In the IEEE Investment ranking challenge 2018, participants were asked to build a model which would identify the best performing stocks based on their returns over a forward six months window. Anonymized financial predictors and semi-annual returns were provided for a group of anonymized stocks from 1996 to 2017, which were divided into 42 non-overlapping six months period. The second half of 2017 was used as an out-of-sample test of the model's performance. Metrics used were Spearman's Rank Correlation Coefficient and Normalized Discounted Cumulative Gain (NDCG) of the top 20% of a model's predicted rankings. The top six participants were invited to describe their approach. The solutions used were varied and were based on selecting a subset of data to train, combination of deep and shallow neural networks, different boosting algorithms, different models with different sets of features, linear support vector machine, combination of convoltional neural network (CNN) and Long short term memory (LSTM).

Back to AIcrowd Research